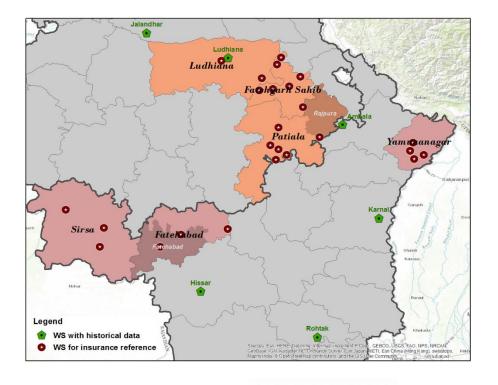
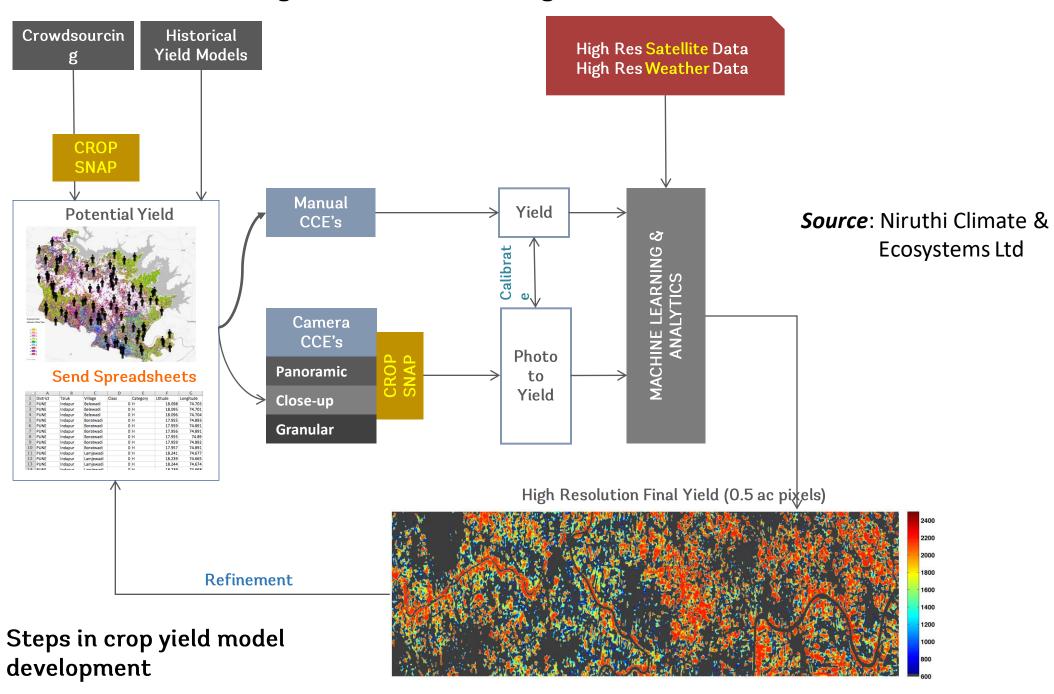

Technology Innovations – Agriculture Insurance

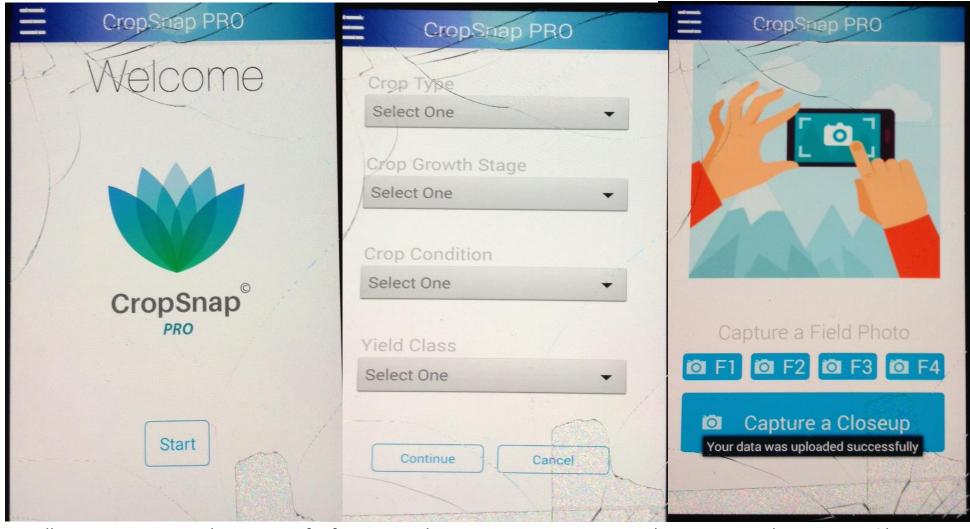
Picture Based Insurance



Picture Based Insurance

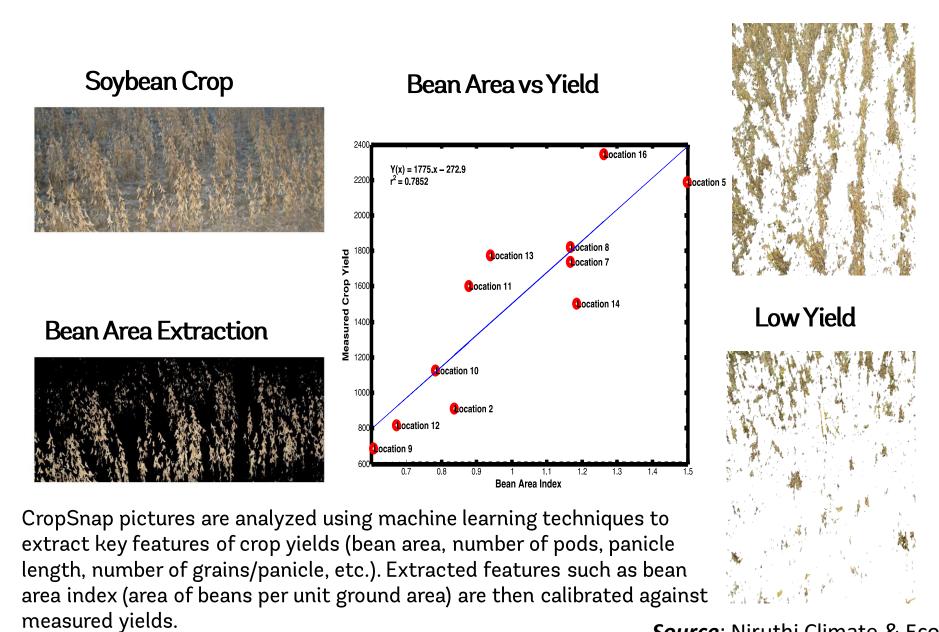
- States: Punjab & Haryana
 - 6 districts
 - 50 villages
 - 750 farmers
- Wheat crop (winter/rabi)





Village-level Yield Monitoring

Mobile App for field-level data collection



- CropSnap allows users to record a variety of information about crops grown, crop condition, canopy density, pest/disease prevalence and expected yields.
- Information is automatically uploaded onto the cloud where it is integrated with satellite data to create maps of farm-village-regional assessments.

Source: Niruthi Climate & Ecosystems Ltd

Crop Yield Recognition System

High Yield

Source: Niruthi Climate & Ecosystems Ltd

Different Remote Sensing Platforms

PLATFORM	Spatial Resolution	Field of View	Usability	Payload Mass	Cost of Data Acquisitions
UAV	0.5-10 cm	50 – 500 cm	Very good/easy	Limited	Very Low
Helicopter	5-50 cm	0.2 – 2 KM	Pilot Mandatory	Almost Unlimited	Medium
Airborne	0.1-2.0 m	0.5 – 5 KM	Pilot Mandatory	Unlimited	High
Satellite	1-25 cm	10 – 50 KM			Very high, particularly for high resolution imagery

Source: Rabi Sahoo, Indian Agriculture Research Institute, India

Satellite vs. UAV based Remote Sensing

Satellite

UAV

Advantages:

- Reliable
- Need not to have special skills to obtain and use the data

Disadvantages:

- Lower resolution
- Quality & resolution of data and imagery obtained may not sufficient for accurate diagnostics
- Easily affected by bad weather conditions
- Non availability of data "when and where" required
- Expensive to develop, launch and maintain

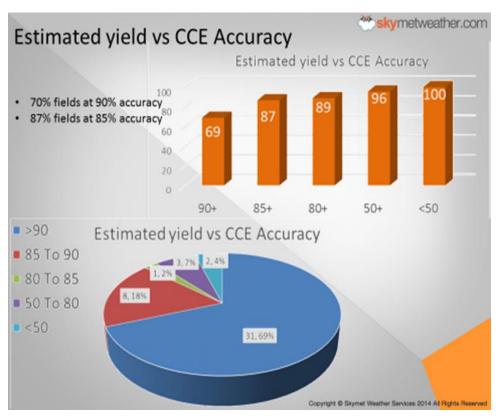
Advantages:

- Easy deployment a mission can be completed with only a one-member "flight crew" and very quick setup time..
- Flight need not be scheduled. It can be based on weather conditions and preference of farmer
- Availability of data and imagery immediately after the flight
- Super high resolution spectral/spatial imaging
- Less time consuming when compared to conventional
- Failsafe the drone can be programmed to "return to home" even in case of link loss

Disadvantages:

- Significant experience required to fly
- Easily destructible
- Need to be stitched

Source: Rabi Sahoo, Indian Agriculture Research Institute, India



Comparison With Status Quo

- Number of CCEs conducted using smart site selection technique to fit this model: 45
- Number of CCEs required as per present guidelines : 204
- Reduction in number of CCEs

Validation:

- Village wise average of estimated yield is compared with village wise average yield of CCEs.
- The correlation coefficients are significant at 99% confidence level.

78%

Remote Sensing and UAV Technologies Feasibility

TOOLS	Description	Applicability in the Context of National Agri Insurance, INDIA			
		Localized Calamities	Post-Harvest Losses	Area Correction	Overall Yield Assessment
Satellites	From Landsat, Sentinel, Risat, Several types of indices available e.g., NDVI	Feasible, but possible only with high resolution		Feasible	Feasible
UAVs	Standard protocol of data acquisition and processing for crop information needs to evolved	Feasible Feasible		Difficult (Heavy investment required)	
Mobile Phones	Apps for geo tagging and capturing crop images and understanding leaf area index as well as grain quality		Feasible	May not be applicable	Feasible
Ground Sensors	For collection of soil and weather datasets	Feasible	May not be applicable	Not Applicable	Feasible

Source: Candiago el al (2015)

Technology Solutions for Agri Insurance

			Technology utilization status			
	Crop insurance	Technology based	Immediate	Medium term (next	Long term (next	
Sl No.	requirement	deliverables	minieulate	3-4 years)	47 years)	
1 1	Insurance rate making	Hazard and vulnerability maps	For selected disasters	For all major disasters		
	Insurance 2 coverage and expansion	Digital geo-referenced	Can be used all over			
		Real-time field info. on coverage				
1 3	Prevented/failed		Sub-District /District	Downscale to finer scale		
		Rainfall data		Improved assessment		
1 4		Realtime field information	Can be used all over			
1 7	<u>_</u>	,	Extent of crop area affected	Improved products		

Global Index Insurance Facility

Technology Solutions for Agri Insurance

SI No.	Crop insurance requirement	Technology based deliverables	Technology utilization status			
			Immediate	Medium term (next 3-4 years)	Long term (next 4 7 years)	
6	Crop mapping & surveillance, area discrepancy	imans weather	lavailability. Microwave	Improved methodologies		
	Crop yield estimation in the insurance units					
7	Improving CCE mechanism		Mobile Apps, Satellite data			
	Reduce CCE plots/ optimal sampling design			Crop yield proxy		
	Replace CCE process		Modeling			
8	Crop loss assessment from abnormal events	IIVIONIIE ANNS	lΔnns and limited	methodologies	Modeling, Methodology improvements	
9	Post harvest losses	Real time field information	Mobile App based enumeration			

Global Index **Insurance Facility**

Global Index Insurance Conference

Thank You

